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Communication
Development of the Recursive Convolutional CFS-PML for the

Wave-Equation-Based Meshless Method
Jun-Feng Wang , Zhizhang David Chen , Cheng Peng, Jinyan Li, and Sergey A. Ponomarenko

Abstract— In this communication, the recursive convolutional complex
frequency shifted perfectly matched layer (CFS-PML) absorbing
boundary condition (ABC) is developed for the wave-equation-based
meshless method. The numerical results show that the proposed
CFS-PML can achieve an excellent absorption performance with the
reflections less than −52.5 dB when the six layers of the PML are
applied, and less than −57.3 dB when ten layers of the PML are
applied (including operations with evanescent waves). The impacts of the
CFS-PML parameters, shape parameter, and different node distribution
types are also investigated. Such performances allow the use of the
wave-equation-based meshless method for solving open problems.

Index Terms— Absorbing boundary condition (ABC), complex fre-
quency shifted (CFS), perfectly matched layer (PML), the node-based
meshless method, wave equation.

I. INTRODUCTION

Without any doubt, accurate electromagnetic numerical methods
have made designs of modern electronic circuits and microwave
devices more efficient and effective. The conventional grid- or
mesh-based numerical methods have been developed and widely
used for microwave and electromagnetic structures modelings, such
as the finite-difference time-domain (FDTD) method [1], the finite
element method (FEM) method [2], and the method of moment
(MoM) [3]. However, when dealing with conformal boundary
problems, the conventional mesh-based methods need predefined
meshes to provide particular relationships between spatial nodes, and
meshing processes can be challenging and problematic in practice.
Moreover, once a mesh is defined, it is hard to conduct partial or
local mesh refinements to capture property variations of a subregion.
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To overcome the above two shortcomings, the node-based meshless
methods were proposed in recent years [4]–[7]. Due to its relative
simplicity and easy treatment of boundary conditions, the radial
point interpolation meshless (RPIM) method has attracted more
attention [8]–[10] than other meshless methods. Toward this end,
Yang et al. [11] report the divergence-free meshless method to
remove the possible spurious numerical solutions. Shams et al. [12]
describe a dispersive time-domain meshless formulation for sim-
ulating linear frequency-dependent materials. Moreover, Yu and
Chen [13] develop the perfectly matched layer (PML) absorbing
boundary condition (ABC) for the unconditionally stable meshless
method.

In the above meshless methods, the first-order Maxwell’s equations
are directly solved; as a result, electric and magnetic field nodes
are positioned spatially in a staggering manner. Such a spatial
node arrangement can be time-consuming for large and complex
structures. It may also pose a problem at a boundary where conditions
are defined jointly and colocated for all the electric and magnetic
fields. To address the staggered-field issue, Yang et al. [14] and
Khalef et al. [15] propose a node collocated time-domain RPIM
method, which is based on the wave equation. In it, instead of
solving Maxwell’s equations directly that involve all the coupled
field components, the decoupled wave equation for electric fields
or magnetic fields only is numerically solved. Consequently, only
the nonstaggered electric field nodes need to be defined and com-
puted. Along the same line, Lombardi et al. [16], [17] develop
the wave-equation-based meshless method for modeling homoge-
neous and inhomogeneous waveguides based on the variational
principle.

In spite of the above developments, there still lack the ABCs,
especially the complex-frequency-shifted (CFS)-PMLs [18]–[21], for
the wave-equation-based time-domain meshless methods. In this
communication, we develop the recursive convolutional CFS-PML
ABC for the wave-equation-based meshless method and numerically
verify its effectiveness.

The PML schemes have been developed for the meshless methods
that solve the first-order Maxwell’s equations directly [22]–[24]. They
cannot be applied directly to the wave-equation-based meshless meth-
ods. This communication fills in the void and successfully develops
the CFS-PML ABC for the wave-equation-based meshless methods.
It not only verifies the effectiveness of the proposed CFS-PML ABC
but also presents the parametric study of its absorption performance.
As a result, the wave-equation-based meshless method can now be
applied to open problems.

It is worth to mention that the wave-equation-based meshless
method with the CFS-PML [25], [26] has the following advantages
over the conventional FDTD method with the CFS-PMLs:

1) the FDTD method essentially uses low-order basis function
(rooftop function) to expand the field quantities, while the
meshless method uses high-order basis function (Gaussian
function); the meshless method has smaller numerical errors
than the FDTD method [8], [10], [14];

0018-926X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dalhousie University. Downloaded on June 12,2021 at 05:01:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9871-7461
https://orcid.org/0000-0001-5346-2514


3600 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 6, JUNE 2021

2) the FDTD grid is not conformal with irregular boundaries and
not easy for local or regional mesh refinements, while the
meshless method is node-based and has relative good flexibility
in handling different boundary shapes and conditions and in
imposing node refinements;

3) the meshless method allows the selections of different basis
functions for spatial discretization, making it more adaptable
to different types of problems [8] and easier hybridization of
different methods [30].

This communication is organized in the following manner. In
Section II, the proposed recursive convolutional CFS-PML ABC is
derived with the introduction of auxiliary variables. In Section III, the
effectiveness of the proposed CFS-PML is verified, and a parametric
study is conducted with different CFS-PML parameters, shape
parameters of the meshless method, and different node distributions.
Finally, conclusion and discussion are made in Section IV.

II. FORMULATIONS OF THE PROPOSED RECURSIVE

CONVOLUTIONAL CFS-PML ABC

For simplicity, we formulate the proposed recursive convolutional
CFS-PML ABC in 2-D and take the 2-D transverse-magnetic case
for easy demonstrations. Consider the 2-D wave equation for electric
field Ez in a homogeneous, lossless, and source-free medium

∇2 Ez − με
∂2 Ez

∂t2 = 0 (1)

where μ and ε represent medium’s permeability and permittivity,
respectively.

In the PML regions, we introduce the second-order
stretched-coordinate complex operator, which is expressed as

∇2
s = 1
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with the stretched-coordinate factor [18]

sw = κw + σw

aw + jωε0
(3)

where w is x or y, κw is the stretched coordinate coefficient which
is real and larger than 1, σw is electric conductivity, and aw is the
shifting parameter.

The CFS-PML wave equation is obtained by substituting (2) into
(1). However, direct computation of the resulting equation is not easy.
Here, we introduce the following auxiliary variables Ax1, Ax2, Ay1,
and Ay2 to perform the PML computation
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We now substitute (4)–(7) into (1), apply the inverse Fourier
transform, and obtain the proposed CFS-PML equation

∂2 Ez

∂t2 = 1

με

∂

∂t

(
Ax2 + Ay2

)
. (8)

In the following paragraphs, we derive the equations for computing
Ax2 and Ay2.

First, we apply the inverse Fourier transform to (4) and obtain

∂Ax1

∂t
= s∗

x (t) ∗
∂Ez

∂x
(9)

where

s∗
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2
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Here, δ(t) represents the Dirac impulse function, and u(t) represents
the unit step function.

We can expand (9) by applying the property of the Dirac impulse
function

∂Ax1 (t, x, y)

∂t
= 1

κx

∂Ez (t, x, y)

∂x
+ ψx1 (t, x, y) (10)

where

ψx1 (t, x, y) = ζ (t, x, y) ∗ ∂Ez (t, x, y)

∂t
(11)

(11) can be computed numerically in a recursive manner

ψx1 (t, x, y) |t=n� = ζ (t) ∗ ∂Ez (t, x, y)

∂t
|t=n�t

= cx
∂Ez (t, x, y)

∂x
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with
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κx (σx + κx ax )

(
e−αx�t − 1

)
.

In solving the above equations, electric field nodes are predefined.
For convenience, we define them like that for the point-matched
time-domain FEM presented in [27]. Then, the electric field Ez is
approximated as

Ez (r) =
M∑

m=1

rm (r) am = R (r) a (13)

where r = (x , y) is the point of interest at which Ez is to be
interpolated, rm(r) is the radial basis function associated with node
m (we choose Gaussian function), am is the expansion coefficients
to be found, and M is the number of electric fields nodes within the
support domain.

With the meshless formulation [10], [14], (13) can be rewritten as

Ez (r) =
M∑

m=1

φm (x, y) En
z,m

= � (r) Esz (r) (14)

where Esz(r) is the unknown electric field value vector to be found,
and the shape function vector (r)=[ϕ1(r), ϕ2(r),…, ϕM (r)] =
RG−1 with

G =

⎡
⎢⎢⎢⎣

r1 (x1, y1) r2 (x1, y1) · · · rM (x1, y1)

r1 (x2, y2) r2 (x2, y2) · · · rM (x2, y2)
...

...
...

r1 (xM , yM ) r2 (xM , yM ) · · · rM (xM , yM )

⎤
⎥⎥⎥⎦ . (15)

Once the shape function (r) is found (it is time-invariant),
the first-order partial derivative can be analytically found as

∂�

∂x
= ∂R
∂x

G−1. (16)

The above meshless method using Gaussian basis function has been
proven to be efficient and more accurate than the FDTD method for
electromagnetic modeling [10], [14].
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By substituting (16) into (10) and (12), respectively, and using the
central finite-difference to replace the time derivative, we can get the
final discretization formulations for ψx1 and Ax1
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where ϕm represents the shape function associated with node m in
the local finite support domain.

The formulations for computing auxiliary variables Ax2, Ay1, and
Ay2 can be derived in a similar way, and results are as follows
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With them applied to (8), we obtain the PML equation for the
wave-equation-based meshless method

En+1
z,i = 2En

z,i − En−1
z,i + �t

με

(
A

n+ 1
2

x2,i + A
n+ 1

2
y2,i

)
. (25)

Note that the ψx1 nodes and the Ax1 nodes are positioned in
between the two neighboring Ez nodes in the x-direction; the ψy1
and Ay1 nodes are positioned in between the two neighboring Ez
nodes in the y-direction; the ψx2, ψy2, Ax2, and Ay2 nodes are
located at the same position of the Ez nodes.

In summary, the computational flowchart of the proposed recursive
convolutional CFS-PML computation is as follows:

1) Update the auxiliary variables ψx1 and ψy1 using (17) and (21).
2) Update the auxiliary variables Ax1 and Ay1 using (18) and (22).
3) Update the auxiliary variables ψx2 and ψy2 using (19) and (23).
4) Update the auxiliary variables Ax2 and Ay2 using (20)

and (24).
5) Update the electric field Ez using (25).
6) Repeat the above operations for each PML layer.

III. NUMERICAL RESULTS

To validate the performance of the proposed CFS-PML scheme for
the wave-equation-based meshless method, a TMz-polarized current
source propagation numerical experiment is conducted first. The
experimental setup is shown in Fig. 1. The solution domain of
air is discretized with 101 × 101 regular nodes, and the nodal
spacing is 1.5 mm. A CFS-PML absorbing medium with the same
nodal spacing encloses the solution domain to absorb electromagnetic

Fig. 1. 2-D free-space excited with a TMz-polarized electric current source.

waves. The shape parameter of the Gaussian basis function (it controls
the decaying rate of Gaussian function [14]) and the radius of the
local support domain are chosen to be 4.5 and 1.5 mm, respectively.
The simulated electric fields are recorded at two test points within
the solution domain (see Fig. 1). Test point A is located at the
position one node away from the right PML; test point B is located
in the top right corner of the solution domain. A Gaussian-modulated
sinusoidal pulse excited at the center of the solution domain, which
can be expressed as Jz = cos(2π fmt)exp(−(t − td)2τ−2) with
fm = 10 GHz, τ = 4/π / fm, and td = 4τ .

The electromagnetic wave absorption performance of the proposed
CFS-PML scheme depends on the stretched-coordinate factor sw
of (2), which depends on parameters σ , k, and a. Within the
CFS-PML medium, the PML parameters are selected and scaled as
follows:

σw,i
(
rw,i

) = σmax
w

(rw,i
d

)n
(26)

κw,i
(
rw,i

) = 1 + (
κmax
w − 1

) (rw,i
d

)n
(27)

aw,i
(
rw,i

) = amax
w

(rw,i
d

)
(28)

where i represents the i th layer of the PML, w = x or y, rw,i is
the distance between the i th PML node and the interface between
the PML medium and the solution domain, d is the total thickness
of the CFS-PML region, and n is the order of scaling profile. The
choice of σopt [1], [21] is taken to be (n + 1)(150π�s) where �s
is the nodal spacing.

First, the electric fields are computed with six and eight layers
of the CFS-PML medium. The reference solution is also included
for comparison; it is obtained in a very large computational domain
bounded by the PEC walls with the same source configuration; the
domain is so large that the waves reflected from the PEC boundaries
do not reach the test point before the simulation is terminated. The
CFS-PML parameters are n = 4, σmax = 2 σopt, κmax = 5, and
amax = 0.05, respectively.

The time-dependent electric field Ez at point B is plotted in
Fig. 2. It is easy to see, in general, the electric fields obtained
with six and eight layers of the PML match very well with the
reference solution. However, when we zoomed-in view the signal
tails, the difference between the results with the proposed CFS-PML
and the reference solution can be observed. As shown in Fig. 2,
the results calculated with the proposed scheme match better with
the reference solution than the results obtained by the FDTD method
with the PML medium [19]. Furthermore, the solution obtained
with eight layers of the CFS-PML medium matches better with the
reference solution than the result with six layers of the CFS-PML
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Fig. 2. Time-dependent Ez fields recorded at observation point B with six
and eight layers of the CFS-PML (n = 4, σmax/σopt = 2, kmax = 5, and
amax = 0.05). The reference solution is also included for comparison.

ABC. It demonstrates that better absorption performance can be
obtained by more CFS-PML layers.

As can be seen from Fig. 3(a), the relative reflection error [22] at
point A is less than −81 dB when we apply four layers of the PML,
and it is less than −165.4 dB when we apply eight layers of the
PML; the reflection error is −78.4 and −104 dB when we employ
the FDTD method with four and eight layers PML [19]. As shown
in Fig. 3(b), at test point B, the reflection error is less than −76.6 and
−151.5 dB when we apply four and eight layers of the PML; the
reflection error is −68.6 and −97 dB when the FDTD method with
four and eight layers PML is conducted. The relative reflection errors
measured at test point A are less than those measured at test point B.
This is because normally incident waves dominate at test point A for
which the CFS-PML ABC has better absorption capacity. Overall,
the CFS-PML for the wave-equation-based meshless method has
excellent absorption performance and better capacity than the PML
medium for the FDTD method.

Next, the effects of the CFS-PML parameters n, kmax, and σmax
on the absorption performance are investigated. We choose the
measurement results at test point B with eight layers of the CFS-PML
ABC Fig. 4 presents contours of the maximum relative reflection error
in decibel as a function of n and σmax/σopt, with κmax = 5 and amax
= 0.05. Fig. 5 plots contours of the maximum reflection error as a
function of kmax and σmax/σopt, when n = 4 and amax = 0.05. It can
be observed that a maximum relative reflection error of −150 dB or
less is achieved by selecting n = 4 and σmax/σopt = 1. As seen, κmax
= 3 and σmax/σopt = 1 give the maximum relative reflection error
of less than −160 dB. Based on above parameters analyze results
(see Figs. 4 and 5), the proposed recursive convolutional CFS-PML
ABC can obtain better absorption in the case studied when PML
parameters σmax/σopt = 0.5 ∼ 3, n = 3 ∼ 5, and κmax = 1 ∼ 10,
respectively.

The shape parameter of the wave-equation meshless method con-
trols the decaying rate of the Gaussian basis function [14]. To further
study the performance of the proposed node-based CFS-PML ABC
scheme, we also investigate how the shape parameter affects elec-
tromagnetic wave absorption. As seen in Fig. 6, when the shape
parameter varies from 2 to 20, the maximum reflection error at
test point A increases monotonously from −166.9 to −140.3 dB.
However, at test point B, the maximum reflection error decreases
from −148.6 to −151.7 dB when the shape parameter varies from
1.5 to 5; then, it increases to −132.2 dB when the shape parameter

Fig. 3. Relative reflection errors versus time obtained with the proposed
CFS-PML scheme with different PML layers (n = 4, σmax/σopt = 2, κmax
= 5, and amax = 0.05). (a) At test point A. (b) At test point B.

Fig. 4. Contour plot of the maximum relative reflection error of eight layers
of the PML in decibel as a function of n and σmax (with κmax = 5 and amax
= 0.05).

varies from 5 to 20. It is evident that the proposed CFS-PML gets
better electromagnetic wave absorption when the shape parameter is
chosen to be in the range of 3 ∼ 7. Nevertheless, in all the cases,
the reflection errors are very small, less than −100 dB, enabling the
effective use of the proposed CFS-PML without much dependence
on the shape parameters.

Next, a numerical experiment is conducted to see how the meshless
node distributions affect PML absorption. This is done conveniently
with the meshless method since the nonuniform node distributions
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Fig. 5. Contour plot of the maximum relative reflection error of eight layers
of the PML in decibel as a function of κmax and σmax (with n = 4 and
amax = 0.05).

Fig. 6. Maximum reflection errors versus shape parameter obtained with the
proposed CFS-PML (n = 4, σmax/σopt = 2, κmax = 5, and amax = 0.05).

can inherently be deployed without much difficulty or additional
process. The proposed CFS-PMLs truncate the solution domain
in the horizontal direction, while the dimensions of the solution
domain in the vertical direction are made long enough so that the
reflections by the vertical ends do not reach the measurement points
before the computation is terminated. In such a way, the reflections
by the horizontal CFS-PMLs can be measured properly without
the interferences from boundaries in the vertical directions. Three
different CFS-PML node distributions are considered:

A) four layers of uniform node distribution,
B) the PML node density in the subspace close to the solu-

tion domain being 1.5 times higher than that in the other PML
region, and

C) the PML node density in the subspace close to the solution
domain being two times higher than that in the other PML region.
The results are shown in Fig. 7. As can be seen, the obtained relative
reflection errors are less than −60.4 dB in situation A with uniform
node distributions.

The reflection error is reduced to be less than −73.6 and −74.1 dB
in situations B) and C), respectively. This is because more nodes are
used in the PML regions in situations B) and C), equivalent to more
PML layers.

Finally, to study the PML absorption of evanescent waves, we con-
sider a parallel-plate waveguide filled with air. The distance between
the two PEC plates is h = 30 mm. The waveguide has a cutoff
frequency at 5 GHz for TM1 mode. A TM1 of frequency fm = 2 GHz
(below the cutoff frequency) is excited, and the proposed PMLs are

Fig. 7. Relative reflection errors versus time obtained with the proposed
CFS-PML scheme with different node distribution types.

Fig. 8. Relative reflection errors of the parallel-plate waveguide operating
under the cutoff frequency with the evanescent wave.

placed very close to the source plane, at only w/2 = 3 mm away from
the source plane. This short distance of 3 mm guarantees that the
evanescent mode still has a significant amplitude when it reaches the
PMLs. The results are shown in Fig. 8. As can be seen, the reflection
error is −52.5, −54.2, and −57.3 dB or less with six, eight, and ten
PML layers. The results verify that the proposed CFS-PML scheme
can also absorb the evanescent wave very well.

IV. CONCLUSION

In this communication, we develop the recursive convolutional
CFS-PML ABC for the wave-equation-based meshless method. The
effects of the CFS-PML parameters on the absorption performances
are investigated. The impacts of the shape parameter of the meshless
method and node distribution types are also analyzed. Numerical
results confirm the generally good performances of the proposed
formulations for the time-domain meshless method based on the wave
equation. The relative reflection error of the proposed PML is less
than −54.2 dB with eight PML layers even for evanescent waves.
Future work may lie in application to heterogeneous medium [28]
and multiphysics problems [29], which is underway in our research
group, and the results are to be reported in the future.
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